Robust speech recognition from binary masks.

نویسندگان

  • Arun Narayanan
  • DeLiang Wang
چکیده

Inspired by recent evidence that a binary pattern may provide sufficient information for human speech recognition, this letter proposes a fundamentally different approach to robust automatic speech recognition. Specifically, recognition is performed by classifying binary masks corresponding to a word utterance. The proposed method is evaluated using a subset of the TIDigits corpus to perform isolated digit recognition. Despite dramatic reduction of speech information encoded in a binary mask, the proposed system performs surprisingly well. The system is compared with a traditional HMM based approach and is shown to perform well under low SNR conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asr-driven Binary Mask Estimation for Robust Automatic Speech Recognition

Additive noise has long been an issue for robust automatic speech recognition (ASR) systems. One approach to noise robustness is the removal of noise information through segregation by binary time-frequency masks; each time-frequency unit in a spectro-temporal representation of the speech signal is labeled either noise-dominant or signal-dominant. The noise-dominant units are masked and their e...

متن کامل

Noise Robust Missing Data Mask Estimation Based on Automatically Learned Features

ABSTRACT In this work, we present a missing feature reconstruction based automatic speech recognition (ASR) system in which masks are estimated by binary classification of features generated by GaussianBernoulli restricted Boltzmann machines (GRBMs). The system is evaluated on Track 1 of the 2nd CHiME challenge data. Overall, the best performance is achieved when the reconstructed speech featur...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Speaker separation using visually-derived binary masks

This paper is concerned with the problem of single-channel speaker separation and exploits visual speech information to aid the separation process. Audio from a mixture of speakers is received from a single microphone and to supplement this, video from each speaker in the mixture is also captured. The visual features are used to create a time-frequency binary mask that identifies regions where ...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 128 5  شماره 

صفحات  -

تاریخ انتشار 2010